glpk -> scip
This commit is contained in:
parent
111fc49ea8
commit
9699a2a2f7
@ -1,17 +1,20 @@
|
||||
#! /usr/bin/env nix-shell
|
||||
#!nix-shell -i python3 -p python3 python3Packages.pyyaml glpk -I nixpkgs=flake:nixpkgs
|
||||
#!nix-shell -i python3 -p python3 python3Packages.pyyaml -I nixpkgs=flake:nixpkgs
|
||||
# pip install pyyaml pyscipopt pyright
|
||||
import sys
|
||||
import yaml
|
||||
import re
|
||||
import subprocess
|
||||
import argparse
|
||||
from collections import OrderedDict
|
||||
import glpm
|
||||
from pyscipopt import Model, quicksum
|
||||
from typing import Any, Tuple, TypeVar
|
||||
from dataclasses import dataclass, field
|
||||
conf = yaml.safe_load(open('config.yaml', 'r'))
|
||||
config = conf['config']
|
||||
config['ignore'].append('')
|
||||
|
||||
QUADRATIC = False
|
||||
|
||||
@dataclass
|
||||
class TaskConfig:
|
||||
personen: list[str]
|
||||
@ -24,16 +27,15 @@ tasks: dict[str, TaskConfig] = OrderedDict({k: TaskConfig(**t) for k, t in conf[
|
||||
X = TypeVar("X")
|
||||
def index(x: dict[X, Any]) -> dict[X, int]:
|
||||
return {v: k for k, v in enumerate(x)}
|
||||
|
||||
daily_workloads = \
|
||||
[sum(task.workload * task.req[d] for task in tasks.values()) for d in range(config['days'])]
|
||||
ALL_DAYS: set[int] = set(range(config['days']))
|
||||
class Person(object):
|
||||
def __init__(self, conf={"dagen":ALL_DAYS}):
|
||||
self.can = set()
|
||||
self.loves = set()
|
||||
self.hates = set()
|
||||
self.does = set() # hardcoded
|
||||
self.can: set[str] = set()
|
||||
self.loves: set[str] = set()
|
||||
self.hates: set[str] = set()
|
||||
self.does: set[Tuple[int, str]] = set() # hardcoded
|
||||
self.has_prefs = False
|
||||
self.conf = conf
|
||||
self.conf['dagen'] = set(conf['dagen'])
|
||||
@ -46,7 +48,7 @@ class Person(object):
|
||||
res -= config['weights']['hates']
|
||||
return res
|
||||
def workload(self, tasks):
|
||||
return sum(tasks[t]['workload'] for (_,t) in self.does)
|
||||
return sum(tasks[t].workload for (_,t) in self.does)
|
||||
def cost(self, num_people):
|
||||
return round(sum((daily_workloads[d] for d in self.conf['dagen'])) / num_people)
|
||||
# probabilistic round: int(math.floor(x + random.random()))
|
||||
@ -54,7 +56,7 @@ def read_people(conf_ppl) -> dict[str, Person]:
|
||||
people = OrderedDict()
|
||||
for x in conf_ppl:
|
||||
val = {"dagen": ALL_DAYS}
|
||||
if type(x) == dict:
|
||||
if isinstance(x, dict):
|
||||
x,val = x.popitem()
|
||||
people[x.lower()] = Person(val)
|
||||
return people
|
||||
@ -66,7 +68,7 @@ def make_task_lut(tasks: dict[str, TaskConfig]):
|
||||
task_lut[lookup] = t
|
||||
task_re = re.compile(config['task_re'])
|
||||
def lookup_tasks(tasks):
|
||||
return (task_lut[x] for x in task_re.split(tasks) if not x in config['ignore'])
|
||||
return (task_lut[x] for x in task_re.split(tasks) if x not in config['ignore'])
|
||||
return lookup_tasks
|
||||
def read_prefs(pref_file, tasks, people):
|
||||
lookup_tasks = make_task_lut(tasks)
|
||||
@ -95,89 +97,110 @@ def set_capabilities(tasks: dict[str, TaskConfig], people: dict[str, Person]):
|
||||
if conf.hardcode is not None:
|
||||
for day, pers in enumerate(conf.hardcode):
|
||||
people[pers.lower()].does.add((day, task))
|
||||
# format as matrices
|
||||
def matrices(people: dict[str, Person], tasks: dict[str, TaskConfig]) -> Tuple[list[list[int]], list[list[int]], list[list[int]], dict[str, int], dict[Tuple[int, int], int], list[list[int]], dict[int, int], dict[int, int]]:
|
||||
mat = lambda a,b: [[0 for j in b] for i in a]
|
||||
loves = mat(people, tasks)
|
||||
hates = mat(people, tasks)
|
||||
capab = mat(people, tasks)
|
||||
tsk_idx = index(tasks)
|
||||
hardcode = {}
|
||||
max_loads = {}
|
||||
costs = {}
|
||||
for i,p in enumerate(people.values()):
|
||||
for t in p.loves: loves[i][tsk_idx[t]] = 1
|
||||
for t in p.hates: hates[i][tsk_idx[t]] = 1
|
||||
for t in p.can: capab[i][tsk_idx[t]] = 1
|
||||
for (d,t) in p.does: hardcode[(i,tsk_idx[t],d)] = 1
|
||||
if 'max_load' in p.conf: # max_load override for Pol
|
||||
for d,l in enumerate(p.conf['max_load']):
|
||||
max_loads[(i,d)] = l
|
||||
# filter days that the person does not exist
|
||||
for d in ALL_DAYS - p.conf['dagen']:
|
||||
max_loads[(i,d)] = 0
|
||||
costs[i] = p.cost(len(people))
|
||||
req = mat(range(config['days']), tasks)
|
||||
for di in range(config['days']):
|
||||
for ti,t in enumerate(tasks.values()):
|
||||
req[di][ti] = t.req[di]
|
||||
workload = {tsk_idx[t]: tasks[t].workload for t in tasks}
|
||||
return (loves, hates, capab, hardcode, max_loads, req, workload, costs)
|
||||
def read_assignment(file, people, tasks):
|
||||
def between_the_lines(f, a=">>>>\n", b="<<<<\n"):
|
||||
for l in f:
|
||||
if l == a: break
|
||||
for l in f:
|
||||
if l == b: break
|
||||
yield map(int, l.strip().split())
|
||||
|
||||
for p in people.values():
|
||||
p.does = set()
|
||||
person_vl = list(people.values())
|
||||
task_nm = list(tasks.keys())
|
||||
for [p,d,j,W,l] in between_the_lines(file):
|
||||
person_vl[p-1].does.add((d-1, task_nm[j-1]))
|
||||
def write_data(people, tasks, file=sys.stdout):
|
||||
[loves, hates, capab, hardcode, max_loads, req, workload, costs] = matrices(people, tasks)
|
||||
print(glpm.matrix("L", loves), file=file)
|
||||
print(glpm.matrix("H", hates), file=file)
|
||||
print(glpm.matrix("C", capab, 1), file=file)
|
||||
print(glpm.matrix("R", req, 0), file=file)
|
||||
print(glpm.dict("Q", hardcode), file=file)
|
||||
print(glpm.dict("Wl", workload), file=file)
|
||||
print(glpm.dict("max_load", max_loads), file=file)
|
||||
print(glpm.dict("Costs", costs), file=file)
|
||||
print(glpm.param("D_count", config['days']), file=file)
|
||||
print(glpm.param("P_count", len(people)), file=file)
|
||||
print(glpm.param("J_count", len(tasks)), file=file)
|
||||
print(glpm.param("ML", 6), file=file) # CHANGE THIS
|
||||
print(glpm.param("WL", config['weights']['likes']), file=file)
|
||||
print(glpm.param("WH", config['weights']['hates']), file=file)
|
||||
def write_tasks(people, tasks, file=sys.stdout):
|
||||
for name, p in people.items():
|
||||
days = [[] for i in range(config['days'])]
|
||||
for (d,t) in p.does:
|
||||
days[d].append((t, t in p.loves, t in p.hates))
|
||||
q = lambda w: ",".join([t + (" <3" if l else "") + (" :(" if h else "") for (t,l,h) in w])
|
||||
def q(w):
|
||||
return ",".join([t + (" <3" if love else "") + (" :(" if hate else "") for (t,love,hate) in w])
|
||||
days_fmt = " {} ||" * len(days)
|
||||
days_filled = days_fmt.format(*map(q, days))
|
||||
print("| {} ||{} {} || {}".format(name, days_filled, p.vrolijkheid(), p.workload(tasks)), file=file)
|
||||
print("|-")
|
||||
|
||||
def scipsol(people: dict[str, Person], tasks: dict[str, TaskConfig]):
|
||||
max_loads: dict[Tuple[str, int], int] = {}
|
||||
for i,p in people.items():
|
||||
if 'max_load' in p.conf: # max_load override for Pol
|
||||
for d,load in enumerate(p.conf['max_load']):
|
||||
max_loads[(i,d)] = load
|
||||
# filter days that the person does not exist
|
||||
for d in ALL_DAYS - p.conf['dagen']:
|
||||
max_loads[(i,d)] = 0
|
||||
|
||||
m = Model()
|
||||
does = {}
|
||||
happiness = []
|
||||
stdevs = []
|
||||
errors = []
|
||||
for pname, person in people.items():
|
||||
workloads = []
|
||||
p_error = m.addVar(vtype="I", name=f"{pname}_error", lb=0, ub=None)
|
||||
for d in ALL_DAYS:
|
||||
pdt = []
|
||||
for task in tasks:
|
||||
var = m.addVar(vtype="B", name=f"{pname}_does_{task}@{d}")
|
||||
pdt.append(var)
|
||||
does[(pname, d, task)] = var
|
||||
# a person only does what (s)he is capable of
|
||||
if task not in person.can:
|
||||
m.addCons(var == 0)
|
||||
workloads.append(var * tasks[task].workload)
|
||||
for task in person.loves:
|
||||
happiness.append(does[(pname, d, task)] * config['weights']['likes'])
|
||||
for task in person.hates:
|
||||
happiness.append(does[(pname, d, task)] * (config['weights']['hates'] * -1))
|
||||
|
||||
# max_load_person: a person only has one task per day at most
|
||||
m.addCons(quicksum(pdt) <= max_loads.get((pname, d), 1))
|
||||
|
||||
m.addCons(p_error >= person.cost(len(people)) - quicksum(workloads))
|
||||
m.addCons(p_error >= quicksum(workloads) - person.cost(len(people)))
|
||||
errors.append(p_error)
|
||||
|
||||
stdevs.append((person.cost(len(people)) - quicksum(workloads)) ** 2)
|
||||
|
||||
# min_load_person: person has at least 1 task
|
||||
m.addCons(quicksum([does[(pname, d, task)] for d in ALL_DAYS for task in tasks]) >= 1)
|
||||
|
||||
# duplicate_jobs: a person does not perform the same job on all days
|
||||
for task in tasks:
|
||||
m.addCons(quicksum(does[(pname, d, task)] for d in ALL_DAYS) <= len(ALL_DAYS) - 1)
|
||||
|
||||
# max_load_person_total
|
||||
m.addCons(quicksum([does[(pname, d, task)] * tasks[task].workload for d in ALL_DAYS for task in tasks]) <= 6)
|
||||
|
||||
# hardcode constraint
|
||||
for d, task in person.does:
|
||||
m.addCons(does[(pname, d, task)] == 1)
|
||||
|
||||
|
||||
# all_allocated: each task in allocated
|
||||
for j in tasks:
|
||||
for d in ALL_DAYS:
|
||||
m.addCons(quicksum(does[(p, d, j)] for p in people) == tasks[j].req[d])
|
||||
|
||||
objective = m.addVar(name="objvar", vtype="C", lb=None, ub=None)
|
||||
m.setObjective(objective, "maximize")
|
||||
if QUADRATIC:
|
||||
m.addCons(objective <= quicksum(happiness) - quicksum(stdevs) / 2)
|
||||
else:
|
||||
if args.max_total_error is not None:
|
||||
m.addCons(quicksum(errors) <= args.max_total_error)
|
||||
m.addCons(objective <= quicksum(happiness) - quicksum(errors))
|
||||
m.setObjective(objective, "maximize")
|
||||
m.solveConcurrent()
|
||||
for pname, person in people.items():
|
||||
for d in ALL_DAYS:
|
||||
for task in tasks:
|
||||
if m.getVal(does[(pname, d, task)]):
|
||||
person.does.add((d, task))
|
||||
write_tasks(people, tasks)
|
||||
|
||||
print("Totale vrolijkheid:", sum(p.vrolijkheid() for p in people.values()))
|
||||
print("workload deviation:", m.getVal(quicksum(stdevs)))
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-q", "--quadratic", action="store_true")
|
||||
parser.add_argument("--max_total_error", type=int, default=None)
|
||||
|
||||
args = parser.parse_args()
|
||||
QUADRATIC = args.quadratic
|
||||
|
||||
people = read_people(conf['people'])
|
||||
with open('prefs_table', 'r') as pref_file:
|
||||
read_prefs(pref_file, tasks, people)
|
||||
set_capabilities(tasks, people)
|
||||
if len(sys.argv)>1 and sys.argv[1] == 'in':
|
||||
write_data(people, tasks)
|
||||
elif len(sys.argv)>1 and sys.argv[1] == 'out':
|
||||
with open('output', 'r') as out_file:
|
||||
read_assignment(out_file, people, tasks)
|
||||
write_tasks(people, tasks)
|
||||
else:
|
||||
with open('data', 'w') as out:
|
||||
write_data(people, tasks, file=out)
|
||||
subprocess.call(["glpsol", "--model", "model.glpm", "-d", "data", "--tmlim", "15", "--log", "output"], stdout=sys.stderr, stderr=sys.stdout)
|
||||
with open('output', 'r') as file:
|
||||
read_assignment(file, people, tasks)
|
||||
write_tasks(people, tasks)
|
||||
scipsol(people, tasks)
|
||||
|
Loading…
Reference in New Issue
Block a user