/* Number of people */ param P_count, integer, > 0; /* Number of jobs */ param J_count, integer, > 0; /* Number of days */ param D_count, integer, > 0; param WL, integer, > 0; param WH, integer, > 0; param ML, integer, > 0; set P := 1..P_count; set J := 1..J_count; set D := 1..D_count; /* aanwezigheid x workload for that day */ param Costs{p in P}, integer, >= 0; /* Person p likes to solve jobs j */ param L{p in P, j in J} default 0, binary; /* Person p hates to solve jobs j */ param H{p in P, j in J} default 0, binary; /* Person p is capable to perform job j */ param C{p in P, j in J} default 1, binary; /* How many jobs need to be done on what day */ param R{d in D, j in J}, integer, >= 0; /* hardcoded */ param Q{p in P, j in J, d in D}, default 0, binary; /* workload */ param Wl{j in J}, integer, >= 0; param max_load{p in P, d in D}, default 1, integer; /* Person p is allocated to do job j on day d */ var A{p in P, j in J, d in D}, binary; var error{p in P}, integer, >= 0; s.t. hardcode{p in P, j in J, d in D}: A[p,j,d] >= Q[p,j,d]; /* A person only has one task per day, at most */ s.t. max_load_person{p in P, d in D}: sum{j in J} A[p,j,d] <= max_load[p,d]; /* A person has at least 1 task */ s.t. min_load_person{p in P}: sum{j in J, d in D} A[p,j,d] >= 1; /* A person does not perform the same job on all days */ s.t. duplicate_jobs{p in P, j in J}: sum{d in D} A[p,j,d] <= D_count-1; s.t. max_load_person_total{p in P}: (sum{d in D, j in J} A[p,j,d] * Wl[j]) <= ML; /* Each task is allocated */ s.t. all_allocated{j in J, d in D}: sum{p in P} A[p,j,d] == R[d, j]; /* A person only performs what (s)he is capable of */ s.t. capability_person{p in P, j in J, d in D}: A[p,j,d] <= C[p,j]; s.t. error_lt{p in P}: error[p] >= ((sum{j in J, d in D} A[p,j,d] * Wl[j]) - Costs[p]); s.t. error_gt{p in P}: error[p] >= Costs[p] - (sum{j in J, d in D} A[p,j,d] * Wl[j]); /* Maximize enjoyment */ # minimize error_diff: sum{p in P} error[p]; maximize enjoyment: (sum{p in P, d in D, j in J} A[p,j,d] * (L[p, j] * WL - H[p, j] * WH)) - sum{p in P} error[p]; solve; printf "Sum %d\n", (sum{p in P, d in D, j in J} A[p,j,d] * (L[p, j] * WL - H[p, j] * WH)); printf "p d j W l\n"; printf ">>>>\n"; printf{p in P, d in D, j in J : A[p,j,d] > 0} "%d %d %d %d %d\n", p, d, j, A[p,j,d] * (L[p, j] * WL - H[p, j] * WH), Wl[j]; printf "<<<<\n"; printf "workloads\n"; printf "p l\n"; printf{p in P} "%d %d\n", p, abs((sum{j in J, d in D : A[p,j,d] > 0} Wl[j]) - Costs[p]); printf "workload_dev: %d\n", sum{p in P} abs((sum{j in J, d in D : A[p,j,d] > 0} Wl[j]) - Costs[p])^2; end;