210 lines
5.3 KiB
Plaintext
210 lines
5.3 KiB
Plaintext
/* Number of people */
|
|
param P_count, integer, > 0;
|
|
|
|
/* Number of jobs */
|
|
param J_count, integer, > 0;
|
|
|
|
/* Number of days */
|
|
param D_count, integer, > 0;
|
|
|
|
param WL, integer, > 0;
|
|
param WH, integer, > 0;
|
|
|
|
set P := 1..P_count;
|
|
set J := 1..J_count;
|
|
set D := 1..D_count;
|
|
|
|
/* Person p likes to solve jobs j */
|
|
param L{p in P, j in J} default 0, binary;
|
|
|
|
/* Person p hates to solve jobs j */
|
|
param H{p in P, j in J} default 0, binary;
|
|
|
|
/* Person p is capable to perform job j */
|
|
param C{p in P, j in J} default 1, binary;
|
|
|
|
/* How many jobs need to be done on what day */
|
|
param R{d in D, j in J}, integer, >= 0;
|
|
|
|
/* hardcoded */
|
|
param Q{p in P, j in J, d in D}, default 0, binary;
|
|
|
|
/* workload */
|
|
param Wl{j in J}, integer, >= 0;
|
|
|
|
param max_load{p in P, d in D}, default 1, integer;
|
|
|
|
/* Person p is allocated to do job j on day d */
|
|
var A{p in P, j in J, d in D}, binary;
|
|
|
|
var error{p in P}, integer, >= 0;
|
|
|
|
s.t. hardcode{p in P, j in J, d in D}: A[p,j,d] >= Q[p,j,d];
|
|
|
|
/* A person only has one task per day, at most */
|
|
s.t. max_load_person{p in P, d in D}: sum{j in J} A[p,j,d] <= max_load[p,d];
|
|
|
|
/* A person has at least D-1 tasks */
|
|
#s.t. min_load_person{p in P}: sum{j in J, d in D} A[p,j,d] >= min_load[p];
|
|
|
|
/* A person does not perform the same job on all days */
|
|
s.t. duplicate_jobs{p in P, j in J}: sum{d in D} A[p,j,d] <= D_count-1;
|
|
|
|
/* Each task is allocated */
|
|
s.t. all_allocated{j in J, d in D}: sum{p in P} A[p,j,d] == R[d, j];
|
|
|
|
/* A person only performs what (s)he is capable of */
|
|
s.t. capability_person{p in P, j in J, d in D}: A[p,j,d] <= C[p,j];
|
|
|
|
s.t. error_lt{p in P}: error[p] >= ((sum{j in J, d in D} A[p,j,d] * Wl[j]) - 4);
|
|
s.t. error_gt{p in P}: error[p] >= 4 - (sum{j in J, d in D} A[p,j,d] * Wl[j]);
|
|
|
|
/* Maximize enjoyment */
|
|
# minimize error_diff: sum{p in P} error[p];
|
|
maximize enjoyment: (sum{p in P, d in D, j in J} A[p,j,d] * (L[p, j] * WL - H[p, j] * WH)) - sum{p in P} error[p];
|
|
solve;
|
|
|
|
printf "Sum %d\n", (sum{p in P, d in D, j in J} A[p,j,d] * (L[p, j] * WL - H[p, j] * WH));
|
|
printf "p d j W l\n";
|
|
printf ">>>>\n";
|
|
printf{p in P, d in D, j in J : A[p,j,d] > 0} "%d %d %d %d %d\n", p, d, j, A[p,j,d] * (L[p, j] * WL - H[p, j] * WH), Wl[j];
|
|
printf "<<<<\n";
|
|
printf "workloads\n";
|
|
printf "p l\n";
|
|
printf{p in P} "%d %d\n", p, abs((sum{j in J, d in D : A[p,j,d] > 0} Wl[j]) - ((sum{d in D, j in J} Wl[j] * R[d,j]) / P_count));
|
|
printf "workload_dev: %d\n", sum{p in P} abs((sum{j in J, d in D : A[p,j,d] > 0} Wl[j]) - ((sum{d in D, j in J} Wl[j] * R[d,j]) / P_count))^2;
|
|
|
|
data;
|
|
|
|
/* Test example */
|
|
|
|
param P_count := 44;
|
|
param J_count := 11;
|
|
param D_count := 3;
|
|
param WL := 1;
|
|
param WH := 3;
|
|
param Wl := 1 4, 2 4, 3 2, 4 2, 5 4, 6 3, 7 2, 8 1, 9 1, 10 2, 11 2;
|
|
# de pol-parameter
|
|
param max_load := 25,1,2; # 12,1,0 12,2,0 12,3,0;
|
|
param R : 1 2 3 4 5 6 7 8 9 10 11 :=
|
|
1 1 3 0 0 1 3 4 6 2 5 0
|
|
2 1 0 6 4 1 3 4 6 2 5 5
|
|
3 1 0 0 0 1 3 4 6 2 5 5;
|
|
/* AUTOGEN STARTS HERE */
|
|
param L : 5 6 7 8 9 10 :=
|
|
1 0 1 0 1 0 0
|
|
2 0 0 1 1 0 1
|
|
3 0 0 1 0 0 1
|
|
6 0 1 0 0 0 1
|
|
7 0 0 0 1 0 1
|
|
8 0 1 0 0 1 0
|
|
9 0 1 1 0 0 1
|
|
11 1 0 0 1 0 0
|
|
13 0 1 0 0 1 0
|
|
14 0 1 0 0 0 1
|
|
16 0 1 0 0 0 0
|
|
18 1 0 0 0 0 0
|
|
19 0 0 1 0 1 1
|
|
20 0 0 0 0 0 1
|
|
21 0 0 0 1 1 0
|
|
22 0 1 1 0 0 1
|
|
23 0 1 0 1 0 0
|
|
24 0 0 0 0 1 0
|
|
25 1 0 0 0 0 0
|
|
26 0 1 1 0 0 1
|
|
27 0 1 0 0 0 1
|
|
28 0 1 0 1 0 0
|
|
29 0 0 1 1 0 0
|
|
30 0 1 1 0 0 0
|
|
31 0 1 0 0 0 0
|
|
32 0 0 1 0 1 1
|
|
34 0 0 0 0 1 1
|
|
35 0 1 0 1 1 0
|
|
36 0 1 0 0 0 1
|
|
38 0 0 1 0 1 1
|
|
39 0 0 1 0 0 1
|
|
40 0 1 0 0 0 1
|
|
41 0 1 1 0 0 1
|
|
43 0 1 0 0 0 0
|
|
44 0 0 0 1 0 0;
|
|
param H : 6 7 8 9 10 :=
|
|
1 0 0 0 0 1
|
|
2 1 0 0 1 0
|
|
6 0 1 0 0 0
|
|
7 0 1 0 0 0
|
|
8 0 1 1 0 0
|
|
9 0 0 1 0 0
|
|
11 0 1 0 1 0
|
|
13 0 1 1 0 0
|
|
14 0 0 1 1 0
|
|
16 0 0 0 0 1
|
|
18 0 1 0 0 1
|
|
19 1 0 1 0 0
|
|
21 1 1 0 0 0
|
|
22 0 0 1 1 0
|
|
23 0 1 0 0 0
|
|
24 0 0 1 0 0
|
|
25 0 1 0 0 0
|
|
26 0 0 1 0 0
|
|
27 0 0 1 0 0
|
|
28 0 1 0 1 0
|
|
29 0 0 0 0 1
|
|
30 0 0 0 1 0
|
|
31 0 0 0 1 0
|
|
32 1 0 1 0 0
|
|
34 0 0 1 0 0
|
|
35 0 1 0 0 1
|
|
36 0 1 0 1 0
|
|
38 1 0 1 0 0
|
|
39 1 0 1 0 0
|
|
40 0 0 0 1 0
|
|
41 0 0 1 1 0;
|
|
param C : 1 2 3 5 6 9 :=
|
|
1 0 0 0 0 1 0
|
|
2 0 1 0 0 0 0
|
|
3 0 0 0 0 0 0
|
|
4 1 0 0 0 0 0
|
|
5 1 0 1 0 0 0
|
|
6 0 1 0 0 1 0
|
|
7 0 0 0 0 0 0
|
|
8 0 0 0 0 1 1
|
|
9 1 0 0 0 1 0
|
|
10 0 0 0 0 0 0
|
|
11 0 0 0 1 0 0
|
|
12 1 0 0 0 0 0
|
|
13 1 0 0 0 1 1
|
|
14 0 0 0 0 1 0
|
|
15 0 0 0 0 0 0
|
|
16 0 0 0 0 1 0
|
|
17 0 0 0 0 0 0
|
|
18 0 0 0 1 0 0
|
|
19 0 0 0 0 0 1
|
|
20 0 0 0 0 0 0
|
|
21 0 0 1 0 0 1
|
|
22 0 0 0 0 1 0
|
|
23 0 0 0 0 1 0
|
|
24 0 0 1 0 0 1
|
|
25 0 1 0 1 0 0
|
|
26 0 0 0 0 1 0
|
|
27 0 0 0 0 1 0
|
|
28 0 0 0 0 1 0
|
|
29 0 0 0 0 0 0
|
|
30 0 0 0 0 1 0
|
|
31 0 0 1 0 1 0
|
|
32 0 0 0 0 0 1
|
|
33 0 0 0 0 0 0
|
|
34 0 0 0 0 0 1
|
|
35 0 0 0 0 1 1
|
|
36 0 0 0 0 1 0
|
|
37 0 0 0 0 0 0
|
|
38 0 0 0 0 0 1
|
|
39 0 0 0 0 0 0
|
|
40 0 0 0 0 1 0
|
|
41 0 0 0 0 1 0
|
|
42 0 0 0 0 0 0
|
|
43 0 0 1 0 1 0
|
|
44 0 0 1 0 0 0;
|
|
param Q := 5,1,1,1 25,5,1,1 18,5,2,1 11,5,3,1;
|
|
|
|
|
|
end; |